Hemoglobinopathic erythrocytes affect the intraerythrocytic multiplication of Plasmodium falciparum in vitro.
نویسندگان
چکیده
BACKGROUND The mechanisms by which α-thalassemia and sickle cell traits confer protection from severe Plasmodium falciparum malaria are not yet fully elucidated. We hypothesized that hemoglobinopathic erythrocytes reduce the intraerythrocytic multiplication of P. falciparum, potentially delaying the development of life-threatening parasite densities until parasite clearing immunity is achieved. METHODS We developed a novel in vitro assay to quantify the number of merozoites released from an individual schizont, termed the "intraerythrocytic multiplication factor" (IMF). RESULTS P. falciparum (3D7 line) schizonts produce variable numbers of merozoites in all erythrocyte types tested, with median IMFs of 27, 27, 29, 23, and 23 in control, HbAS, HbSS, and α- and β-thalassemia trait erythrocytes, respectively. IMF correlated strongly (r(2) = 0.97; P < .001) with mean corpuscular hemoglobin concentration, and varied significantly with mean corpuscular volume and hemoglobin content. Reduction of IMFs in thalassemia trait erythrocytes was confirmed using clinical parasite isolates with different IMFs. Mathematical modeling of the effect of IMF on malaria progression indicates that the lower IMF in thalassemia trait erythrocytes limits parasite density and anemia severity over the first 2 weeks of parasite replication. CONCLUSIONS P. falciparum IMF, a parasite heritable virulence trait, correlates with erythrocyte indices and is reduced in thalassemia trait erythrocytes. Parasite IMF should be examined in other low-indices erythrocytes.
منابع مشابه
Hemoglobin S and C affect protein export in Plasmodium falciparum-infected erythrocytes
Malaria is a potentially deadly disease. However, not every infected person develops severe symptoms. Some people are protected by naturally occurring mechanisms that frequently involve inheritable modifications in their hemoglobin. The best studied protective hemoglobins are the sickle cell hemoglobin (HbS) and hemoglobin C (HbC) which both result from a single amino acid substitution in β-glo...
متن کاملDifferential time‐dependent volumetric and surface area changes and delayed induction of new permeation pathways in P. falciparum‐infected hemoglobinopathic erythrocytes
During intraerythrocytic development, Plasmodium falciparum increases the ion permeability of the erythrocyte plasma membrane to an extent that jeopardizes the osmotic stability of the host cell. A previously formulated numeric model has suggested that the parasite prevents premature rupture of the host cell by consuming hemoglobin (Hb) in excess of its own anabolic needs. Here, we have tested ...
متن کاملInvolvement of spectrin and ATP in infection of resealed erythrocyte ghosts by the human malarial parasite, Plasmodium falciparum
Resealed erythrocyte ghosts were prepared under different experimental conditions and were tested in vitro for susceptibility to infection with the human malarial parasite, Plasmodium falciparum. Resealed ghosts, prepared by dialyzing erythrocytes in narrow membrane tubing against low ionic strength buffer that was supplemented with magnesium ATP, were as susceptible to parasite infection as we...
متن کاملHexose permeation pathways in Plasmodium falciparum-infected erythrocytes.
Plasmodium falciparum requires glucose as its energy source to multiply within erythrocytes but is separated from plasma by multiple membrane systems. The mechanism of delivery of substrates such as glucose to intraerythrocytic parasites is unclear. We have developed a system for robust functional expression in Xenopus oocytes of the P. falciparum asexual stage hexose permease, PfHT1, and have ...
متن کاملRole of the Plasmodium falciparum mature-parasite-infected erythrocyte surface antigen (MESA/PfEMP-2) in malarial infection of erythrocytes.
During intraerythrocytic growth of Plasmodium falciparum, several parasite proteins are transported from the parasite to the erythrocyte membrane, where they bind to membrane skeletal proteins. Mature-parasite-infected erythrocyte surface antigen (MESA) has previously been shown to associate with host erythrocyte membrane skeletal protein 4.1. Using a spontaneous mutant of P falciparum that has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of infectious diseases
دوره 210 7 شماره
صفحات -
تاریخ انتشار 2014